An Integrated Active Measurement
Programming Environment

Matthew Luckie®, Shivani Hariprasad!, Raffacle Sommese?, Brendon Jones!,
Ken Keys!, Ricky Mok!, and K Claffy!

CAIDA, UC San Diego, USA
{mjl,shari,brendonj,kkeys, cskpmok,kc}@caida.org
University of Twente, Netherlands
r.sommeseQutwente.nl

Abstract. Active Internet measurement is not a zero-risk activity, and
access to Internet measurement vantage points typically requires navi-
gating trust relationships among actors involved in deploying, operating,
and using the infrastructure. Operators of vantage points (VPs) must
balance VP capability against who gets access: the more capable a van-
tage point, the riskier it is to allow access. We propose an integrated
active measurement programming environment that: (1) allows a plat-
form operator to specify the measurements that a user can run, which
allows the platform operator to communicate to the VP’s host what their
vantage point will do, and (2) provides users with reference implementa-
tions of measurement functions that act as building blocks to more com-
plex measurements. We first review active measurement infrastructures
and how technical and usability goals have evolved over the years. We
prototype and deploy an integrated active measurement programming
environment on an existing measurement infrastructure, and illustrate
its potential with several case studies.

1 Introduction

Network operators and researchers often require the ability to conduct active
measurements of networks from a specific location in order to understand some
property of the network. However, access to vantage points requires navigating
trust relationships among three types of actors involved in deploying, operating,
and using the infrastructure: (1) the hosting site that deploys a vantage point
(VP) in their network, (2) the platform operator that maintains the VPs in the
field, and (3) the researchers that use the platform. The hosting site incurs risk
in hosting a VP, and has to trust that the platform operator will use the VP
in ways that do not harm the hosting network. The platform operator incurs
significant risk when they allow researcher access to the platform. These trust
requirements inhibit deployment of active measurement infrastructure, impeding
progress in the field of Internet measurement.

Figure 1 illustrates a spectrum of access models for active measurement in-
frastructure, ordered from least to most restrictive. The least restrictive solutions

Least Restrictive Examples

A - Shell access to VPs PlanetlLab
* Run code in containers on the VPs EdgeNet
» Run code to construct packet sequences in sandbox on the VP Scriptroute
* VPN access to send packets from VPs, logic off-VP PacketlLab

+ An integrated active measurement programming environment,

logic on-VP, or in infrastructure
» API to use measurement primitives, logic elsewhere Altlas, Ark
v * Use provided data Atlas, Ark

Most Restrictive
Fig. 1. Spectrum of active measurement infrastructures.

grant researcher access directly to the VP, either bare-metal, or within a con-
tainer. The platform operator can restrict access with process and capability
limits, but has little other control over what the researcher does, and thus as-
sumes significant risk. A step removed from this is VPN-like access: the VP
acts as a simple packet forwarder, allowing a researcher to use the node without
providing shell access. These solutions allow researchers to craft specific packet
sequences that allow for inference based on how the receiver reacts.

More restrictive solutions do not allow access to the VPs, or do not allow
researchers to construct their own packet sequences. The most restrictive solu-
tions provide raw data, which relies on the platform operator knowing the needs
of the measurement community a priori, or provide access to a restricted set
of tests via an API. The utility of the platform hinges on the usefulness of the
data, the provided tests, and responsiveness of the API.

This paper proposes, implements, and deploys a solution that lies in the mid-
dle of the spectrum. Our contribution is to provide a Python-based integrated
active measurement programming environment that exposes both a set of dis-
tributed VPs, and a set of useful measurement primitives from which to build
sophisticated measurement tools. The key benefits to researchers are that (1) the
environment can provide reference implementations of measurement primitives
that are difficult to implement correctly, making the environment useful espe-
cially for novice programmers, (2) the environment allows researchers to focus
on the logic that ties a series of measurements together in an experiment, and
(3) the logic is close to the VP, reducing experiment latency.

The key benefit to a site host is that the environment makes it difficult for
a researcher to cause harm, intentionally or not, as researchers are restricted
to the available measurements. The environment allows the platform operator
to describe to the hosting site how researchers can use their VPs. However, re-
searchers rely on the environment maintainers and platform operators to expose
useful measurement primitives and to keep the environment current with modern
systems and evolving Internet protocols.

After a review of related measurement platforms, we articulate our design
goals, describe our architecture and implementation, and demonstrate its poten-
tial using several case studies.

2 Researcher-oriented client-side measurement platforms

Several early (now defunct) active measurement platforms such as Skitter [12],
Surveyor [14], AMP [22], NIMI [25,26], and DIMES [31] provided (primarily
simple traceroute topology) data for use by the research community. We do not
discuss M-Lab because it provides server-side facilities for client-server active
measurements [10], or NLNOG RING because the infrastructure requires a user
be an operator at an AS with a participating VP [24].

PlanetLab: In 2002, Peterson et al. began deploying PlanetLab, a platform
for deploying and managing distributed network services [27]. PlanetLab op-
erators distributed customized Linux-based hardware systems to research and
education organizations. The customizations included (1) virtual slices isolated
from other slices running on the same system, (2) the ability to use socket APIs
that typically required root privileges, and (3) management software. The mea-
surement community made extensive use of PlanetLab. At its peak, PlanetLab
had systems in ~700 organizations. PlanetLab shut down in 2020.

Scriptroute: Released in 2003, Scriptroute [32] provided (1) a set of dis-
tributed VPs, and (2) a sandboxed scripting environment so that unvetted users
could use them. An application programmer wrote Ruby scripts that embedded
logic for sending packets and processing received packets. Users found VPs with
DNS queries, and uploaded scripts to VPs of interest via an HT'TP API, requir-
ing that each VP have a publicly reachable IP address. Each VP’s Scriptroute
instance protected the hosting site from accidental or malicious transgressions
by running user scripts in distinct sandboxes that limited the resources and
system capabilities available to each script, enforced policy around the types
and frequency of packets that each script could send, and matched probes with
responses so that each script could only observe responses to packets it sent.

Ark: In 2007, CAIDA began operating the Ark infrastructure to perform
comprehensive global topology mapping as well as support third-party experi-
ments on the platform. As of October 2024, the infrastructure consists of ~170
VPs distributed in 57 countries across 133 ASes. The infrastructure consists
of x86 rack-mount systems, Raspberry Pis (versions 2-4), as well as VMs and
containers. To coordinate measurements between VPs, CAIDA implemented (in
Ruby) a distributed tuple-space named Marinda. CAIDA made extensive use
of Marinda for its own global measurements and research, but no external re-
searcher published a paper where they had used Marinda to coordinate mea-
surements. Researchers could deploy vetted measurement software on the nodes,
but deployment was cumbersome because Ark had a mix of operating systems,
both vendors and vintages, and a mix of CPU architectures.

RIPE Atlas: operated by RIPE NCC since 2010, Atlas is currently the
largest deployed operational active measurement infrastructure, with 12,111 VPs
in 3,649 IPv4 (1,844 TPv6) ASes as of October 2024, representing 4-5% of routed
ASes [30]. Atlas consists of different types of VPs. The majority (7,697) are
small single-board computers with limited CPU, storage, and memory. Atlas
also consists of more-powerful anchors (794), as well as software VPs (3,620)
using the same software as deployed on the single-board computers. Factors in

Atlas’ success include (1) the VPs were cheap to produce, (2) RIPE restricts
the types of measurements conducted on the VPs to mitigate risk to site hosts,
(3) these primitives provide useful building blocks, (4) RIPE incentivizes VP
deployment by providing credits to site hosts that enables site hosts to conduct
measurements from other Atlas VPs, and (5) RIPE subsidizes Atlas through RIR
fees. Atlas exposes simple measurement primitives through their web-based API
that allows users to conduct ping, traceroute, and selected DNS and NTP queries.
Users schedule measurements through the API, and then fetch the results when
they become available. To accomplish a complex measurement, the user must
parse the raw data, and then issue new requests through the API. It is challenging
to deploy reactive measurements, as it “generally takes a few minutes to get the
result of a measurement” [8] and most VPs send 4-12 packets per second [8].

PacketLab: Proposed in 2017, PacketLab [17] provides a packet-oriented
interface for sending and receiving packets via a distributed set of VPs, similar
in goal to Scriptroute. PacketLab’s architecture includes (1) a controller that
provides centralized access to a set of VPs, (2) packet-sending policy enforced
through BPF filters, and (3) authentication of measurements through crypto-
graphic certificates. In recent years, the PacketLab authors reported prototype
deployment on EdgeNet [33,34] and implementations of ping, traceroute, DNS
lookups, and HTTP requests. A PacketLab implementation of a protocol that
uses TLS (such as HTTPS) would be complex, requiring the implementer to
marshal packets through a TLS library off the VP.

EdgeNet: In 2017, researchers at Sorbonne began building a software-only
platform for deploying distributed network services, motivated by the obser-
vation that maintaining and debugging hardware required six full-time people
at PlanetLab [6]. Site hosts contribute software (VM) nodes to EdgeNet. Ed-
geNet operators seek to manage the nodes with off-the-shelf software, such as
Kubernetes, rather than customize the operating system. Researchers use these
software nodes by publishing Docker containers that EdgeNet can deploy on the
nodes [7]. As of 2024, EdgeNet consists of ~50 nodes.

FLOTO and PINOT: Both PINOT [4] and FLOTO [15] are recent (2022)
infrastructures consisting of densely deployed Raspberry Pi 4 VPs in select lo-
cations. As of October 2024, PINOT is mostly deployed in Santa Barbara, while
FLOTO is mostly deployed in Illinois. Following EdgeNet’s lead, both are man-
aged with existing solutions — FLOTO uses openBalena and Kubernetes, while
PINOT uses SaltStack. Both FLOTO and PINOT invite researchers to deploy
containers built for the ARM architecture on their nodes.

3 Platform Goals and Design Decisions

Goal: Easy to Use: To make the environment easy to use, we provide Python
interfaces to measurement capabilities present on a collection of remote vantage
points, and thoroughly document our interfaces [20]. The environment executes
the measurements on the VPs, and provides the results as objects. We chose
to provide Python interfaces as Python is extensively used in the measurement

community, both in academia and industry, with a large set of modules available
for re-use.

Goal: Performant: The delay between measurement and result should be
small, so that researchers can build complex reactive measurements. We built our
environment with an event-driven API, where results return to the researcher’s
code as they arrive, with simple method calls. Further, we provide centralized
access to the VP controller interface, where code runs as close as possible to the
VP controller to further minimize delay.

Goal: Site-host transparent: The environment should allow platform op-
erators to accurately describe the types of measurements the VPs will do. We
chose to build our enviroment with measurement primitives, rather than provide
a packet sending interface, so that we can precisely describe the type of traffic
that the site host should expect to see, and communicate risks around each of
the available measurement primitives.

Goal: Interoperable and Extensible: Using off-the-shelf and easily de-
ployable components will maximize avenues of future deployment. We used com-
ponents available in scamper [18] to provide measurement capabilities on VPs,
and to support centrally scheduling and receiving of measurements on VPs (§4).
Importantly, scamper is interoperable, as it builds and runs on a diverse set
of operating systems and architectures, has few (all optional) external depen-
dencies, can run inside containers, and is available in packaged form. Crucially,
scamper is extensible, and provides interfaces to add measurement primitives.

Value of our approach: In 2023, Fiebig described four requirements for
producing robust and effective measurement artifacts [11]. Our proposal shares
Fiebig’s aspirations for a community measurement infrastructure that improves
reliability and accessibility of active measurement capability. Compared to prior
work (§2), our approach provides programmatic interfaces to coordinate the
use of measurement primitives across a distributed collection of VPs. These
interfaces allow researchers to focus on collecting and analyzing data, which we
believe will increase accessibility of active measurement capability. Researchers
do not have to build containers in order to use VPs, or reimplement measurement
techniques using packet-sending interfaces. Our approach allows for performant
researcher access to VPs through a centralized controller, while being transparent
with site-hosts about what types of measurements their VPs will do.

4 Architecture

Our system consists of three components: (1) reference implementations of active
measurement primitives deployed on VPs around the world, (2) a controller
that interfaces with VPs, making them available for use from a central location,
and (3) an environment for scheduling, interpreting, and storing measurements.
Figure 2 illustrates our high-level architecture.

For the first component, we deploy scamper to provide implementations of
our measurement primitives. Scamper, written in C, contains implementations
of traceroute and ping for simple IP topology and delay measurements, DNS

Ping DNS Traceroute HTTP UDP Alias Resolution TBIT

(1) Scamper

Control Channel

(2) Central Server (Controller) 66006060606 | Unix domain sockets

Raw Test Commands Raw Test Results

(3) Integrated Active Measurement

scamper.so Pvth Modul
Development Environment yehon Module

(4) User Code shortest—ping.py authns—delay.py midar.py tslp.py
reverse—traceroute.py serial—checker.py

Fig. 2. System Architecture. Scamper processes on VPs connect to a central controller.
Scripts access measurement primitives on VPs using an integrated active measurement
development environment deployed on, or next to, the controller.

lookups for resolving names, HTTP(S) to interact with webservers, UDP probes
to interact with query-response services such as NTP and SNMP, alias reso-
lution methods for identifying which IP addresses belong to the same router,
packet capture to selectively record specific packets, and TBIT [23] for inferring
properties of a remote TCP stack.

Scamper’s remote controller terminates connections from these VPs on the
central server. Each VP is represented by a Unix domain socket in the file
system. To overcome the complexity of scamper’s existing APIs, we built a
Python module that abstracts this complexity. We implemented this module
using Cython [28], which provides a simple way to write Python bindings for C
libraries, allowing us to provide native Pythonic interfaces for scamper’s active
measurement capabilities. The binding is implemented in ~11K lines of Cython.

Our module exposes two broad collections of classes. The first collection
consists of interfaces for interacting with vantage points, which minimize the
complexity of managing tasks distributed across a collection of VPs. The second
collection consists of interfaces for interacting with measurement results, which
normalize the methods and attributes across different measurement types, as
the interfaces presented by scamper’s underlying primitives were inconsistently
named or presented [13].

Coordination Classes: Figure 3 identifies the core classes and methods for
managing and executing measurements across VPs. The most important class is
the ScamperCtri class, through which scripts schedule measurements, find VPs,
and obtain measurement results. We illustrate these methods with examples in
§5. Briefly, the add methods allow a script to add VPs to an experiment. Because
selecting an initial set of VPs is a common workflow, the ScamperCtrl constructor
allows specification of VPs when creating a ScamperCtrl object.

Coordination Classes Primitives Result Classes

ScamperCtrl coordinate measurements across VPs d_(Lping() ScamperPing
add;*() add VPs) do_trace() ScamperTrace
o he) o ST (e O G590 g Seamperos
responses() return data for all outstanding tasks do_http() ScamperHitp
poll() return first item of data do_udpprobe() ScamperUdpprobe

ScamperInst represent and store properties of VP do_tracelb() ScamperTracelb
done() signal no more measurements to come do_sniff() ScamperSniff

do_tbit() ScamperTbit

ScamperTask an in—progress measurement do_ally() ScamperDealias
halt() cancel in—progress measurement do_mercator() ScamperDealias

ScamperInstError a Python exception reporting error from VP | do_prefixscan() ScamperDealias
inst which Scamperlnst reported the error do_radargun() ScamperDealias

ScamperFile a file containing measurement data do_midarest() ~ScamperDealias
read() write() read and write measurement data &midardise() ScamperDealias

Fig. 3. VP coordination classes (left), primitives (middle), and result classes (right) in
our integrated active measurement development environment.

The do methods allow a script to instruct a VP to use one of its measurement
primitives (middle-column of figure 3). The do methods allow measurements to
execute synchronously, where the do method blocks until it returns the completed
measurement, or asynchronously, where the method returns a ScamperTask ob-
ject representing the issued measurement, with control immediately returning
to the script. A script would use a synchronous call when a measurement must
complete before the script will issue additional measurements, and would use
an asynchronous call when it wanted to issue further measurements or do some
other computation. These do methods present a consistent API over the incon-
sistent API provided by scamper. The parameters to each method have the same
name when they mean the same thing, and the parameters have consistent units.
For example, all time-related parameters use Python’s timedelta or a float rep-
resenting the number of seconds. The instances method lists the available VPs,
with each VP represented in the environment with a ScamperInst object.

Finally, the responses method returns measurement results, as they arrive,
for all scheduled measurements, while the poll method allows a script to obtain
just the next available result, waiting for up to the specified length of time. This
provides researchers with multiple possible workflows, each of which is applica-
ble in different scenarios. A script can use (1) synchronous measurement via do
when a measurement must complete before the script will issue additional mea-
surements, (2) blocking asynchronous measurements via do and responses when
the script needs to issue multiple parallel measurements, and then collect all
responses before reacting to the results of the measurement, or (3) non-blocking
asynchronous measurements via do and poll when they have a large number
of measurements to stream in parallel across one or more VPs. We decided to
centralize as much of the coordination on the ScamperCtrl object as possible,

including issuing measurements, as otherwise scripts would issue measurements
via ScamperInst and collect them via ScamperCtrl, which we judged to be an
unusual, inelegant, workflow.

Scripts can indicate that they have no further work for a given VP by calling
the done method on a ScamperInst object. Similarly, scripts can indicate that
they no longer need a given measurement to complete by calling the halt method
on a ScamperTask object. If any VP encounters an error while executing a mea-
surement, the environment will raise a ScamperInstError exception, allowing the
script to identify the specific instance that raised the exception, and a text string
explaining the exception condition. Finally, the ScamperFile class allows scripts
to work with scamper’s native binary output format. To support the common
workflow of writing measurement output to a file, a script can provide a Scam-
perFile object to the ScamperCtrl constructor, which will automatically record
all measurements to that file.

Measurement Result Classes: The middle and right columns of figure 3
list the available measurement primitives and measurement result classes. For
each measurement result, we added Pythonic interfaces to the data. We repre-
sent time using Python’s datetime and timedelta classes, provide iterators and
generators for convenience, normalize the names of fields across result classes,
and provide convenient methods to minimize the amount of code and increase
clarity. For example, our environment provides a min_rtt attribute for Scamper-
Ping that internally iterates through the responses the script receives to obtain
the minimum RTT observed so that the script’s author does not have to embed
that code themselves. Similarly, our environment provides an ans_addrs method
for ScamperHost that internally iterates through the DNS resource records in the
answer section of the response, collecting only IPv4 and/or IPv6 addresses in
the answer. This method saves the script’s author from writing code to interpret
each resource record’s class and type.

5 Illustrative Examples

We detail three examples that illustrate the capabilities described in §4, and
demonstrate the elegance and succinctness of code that uses the environment.
We then summarize several other experiments the environment has supported.

Asynchronous Case, Shortest Ping: Figure 4(a) contains a complete
script that finds the VP with the shortest delay to a given IP address, rendering
that VP a proxy for the approximate geolocation of that IP address. First, the
script instantiates a ScamperCtrl object with a directory of Unix domain sockets,
each of which represents a remote VP. Then, the script issues a ping measure-
ment using each instance held in the ScamperCtrl object. These measurements
run on the VPs asynchronously in parallel. The script collects measurement
replies using the responses method on ScamperCtrl, finally exiting when there
are no measurements outstanding. The script tracks the minimum RTT observed
across all VPs, printing the name of the VP that provided the minimum RTT.
Figure 4(a) is a complete script in 19 lines of code, with 4 blank for readability,

import sys
from scamper import ScamperCtrl

if len(sys.argv) !=3:
print("usage: shortest-ping.py $dir $ip")
sys.exit(-1)

ctrl = ScamperCtrl(remote_dir=sys.argv[1])
for inst in ctrl.instances():
ctrl.do_ping(sys.argv[2], inst=inst)

min_rtt = min_vp = None
for res in ctrl.responses():
if res.min_rtt is None: continue
if min_rtt is None or min_rtt > res.min_rtt:
min_rtt, min_vp = res.min_rtt, res.inst

print("%s %.1f ms" % (min_vp.name,

import sys
from scamper import ScamperCtrl
if len(sys.argv) !=3:
print("usage: authns-delay.py $inst $zone")
sys.exit(-1)
inst, zone = sys.argv[1:]
ctrl = ScamperCtrl(remote=inst)
res = ctrl.do_dns(zone, qtype="NS", sync=True)
for ns in res.ans_nses():
ctrl.do_dns(ns, qtype="A")
ctrl.do_dns(ns, qtype="AAAA")

addrs = {}
for res in ctrl.responses():
for addr in res.ans_addrs():
addrs[addr] = res.qname
for addr in addrs.keys():

min_rtt.total_seconds() * 1000))

ctrl.do_ping(addr)

(a) Shortest Ping for res in ctrl.responses():
if res.min_rtt is not None:
print(f"{res.dst} {addrs[res.dst]}",
f"{res.min_rtt.total_seconds() * 1000}")
else:

Authoritati Del
(b) Authoritative Nameserver Delay — print(f"{res.dst} {addrs[res.dst]} none")

Fig. 4. Illustrative examples: finding the VP closest to an IP address (left) and mea-
suring the delay from a VP to a zone’s authoritative nameservers (right).

and 3 reporting the correct usage of the script. The script completes in &5 sec-
onds on Ark (§2): 4 seconds for 4 echo requests from each VP, plus time sending
measurement commands and receiving responses from VPs.

Synchronous Case, Nameserver Delay: Figure 4(b) illustrates the syn-
chronous approach with a script that determines the RTT to nameservers au-
thoritative for a given zone. The first measurement — to determine the names of
those nameservers — must complete before subsequent measurements can pro-
ceed. Therefore, the first DNS query in figure 4(b) uses sync=True so that the
measurement completes synchronously. Note, the script could have issued the
measurement asynchronously and collected the result using responses or poll
(§4), but that would have been inelegant, and would have required writing more
code. The remaining steps in figure 4(b), which determine the IP addresses of
those nameservers, and then obtain the RTTs to them, complete asynchronously.
This is a complete 27-line script, with 4 blank lines, lines, 3 usage lines, and one
wrapped line to fit within a single column. The script completes in ~7 seconds —
4 seconds for 4 echo requests, 1-2 seconds for the DNS queries, plus time sending
measurement commands and receiving responses.

Characterizing Netflix CDN Infrastructure: Characterizing CDNs re-
quires geographically distributed VPs to discover and probe cache servers from
different locations [1,9]. Our example collects the IP topology towards Netflix’s
CDN infrastructure of Open Connect Appliances (OCAs) [5], through Netflix’s
fast.com speed test service. Netflix directs clients (usually a web browser) to a
nearby OCA, from which the client would then transfer large objects in order

if len(sys.argv) !=2: for obj in ctrl.responses(timeout=25):

print("usage: fast.py $dir") if not isinstance(obj, ScamperHttp): continue
sys.exit(-1) json_data = json.loads(obj.response.decode())
tgts = json_data.get("targets", [])
url = "https://api.fast.com/netflix/speedtest/v2?" tgturls = [tgt["url"] for tgt in tgts]
date = datetime.now().strftime(dns_hosts[obj.inst] = [urlparse(tgt).hostname
"%Y-%m-%d_%H:%M:%S") for tgt in tgturls]
filename = f"fast.{date }.warts.gz"
ctrl = ScamperCtrl(remote_dir=sys.argv[1], # query for speedtest server IPs from each VP
outfile=ScamperFile(filename, "w")) server_ips = {}

for inst, hosts in dns_hosts.items():
query for api.fast.com IP address from each VP Olfolrn}?ost ?rsl }Sul)l;ts:m_ osts.items()
http_addrs = {}] ctrl.do_dns(host, inst=inst)
for inst in ctrl.instances(): . . for obj in ctrl.responses(timeout=>5):
ctrl,glq_dns(urlparse(url).hostname, inst=inst) if isinstance(obj, ScamperHost):
Cddr = obj s addn) server_ips[ob.inst] = obj.ans_adds()
if len(addrs) > 0:

http_addrs[obj.inst] = addrs[0] # collect topology to each IP with TCP traceroute
- for inst, ips in server_ips.items():
HTTP query for server names from each VP for ip in ips:
dns_hosts = { } ctrl.do_trace(ip, wait_timeout=1, dport=443,
for inst, ip in http_addrs.items(): method="tcp", inst=inst)
ctrl.do_http(ip, url, inst=inst) for obj in ctrl.responses(timeout=25): pass

Fig. 5. Collecting data on topological deployment of fast.com speed test servers with
VP-specific DNS lookups, HT'TP queries, and TCP traceroutes.

to measure speed. The speedtest servers returned by Netflix depend on the VP.
From each VP, (1) we need DNS lookups to know the IP address of the fast.com
web-based API that returns speedtest servers for each VP, in case the address re-
turned depends on the resolver used by the VP, (2) we need HT'TP capability to
fetch JSON from the fast.com RESTful API via HTTP that contains URLs, one
for each speedtest server recommended by Netflix for the VP to test against, (3)
we need DNS lookups to know the IP addresses of these servers, and (4) we need
traceroute and ping to determine basic topological and performance properties.
Our environment provides all of these primitives, and our example (figure 5)
closely follows these steps, collecting measurements from all available VPs in
parallel. The script runs in ~60 seconds on Ark — up to 25 seconds each for the
traceroutes and HTTP queries, plus two rounds of DNS queries. Appendix A
describes this example in further detail.

Complex Measurements: We reproduced a portion of Trufflehunter [29],
which infers the popularity of rare domains through queries to large public recur-
sive resolvers operated by Google, OpenDNS, Quad9, and Cloudflare (see [21]).
We have also reproduced two macroscopic studies of the Internet’s router in-
frastructure — the first used SNMPv3 queries to identify router vendors and
aliases [3], and the second used those vendors to train a fingerprint classifier
to infer vendors for other routers that did not return an SNMPv3 response [2].
Finally, we added primitives to support MIDAR [16], which uses a set of VPs to
probe router interfaces with the goal of finding which interface IP addresses be-
long to the same router (are aliases) — those where response IPID values appear
to be derived from a central counter. Intuitively, MIDAR solves this problem at

Internet scale by providing a distributed set of VPs with a set of probe definitions
(ICMP, UDP, TCP, IP addresses) and a sliding-window schedule that specifies
when these probes should enter the network, so that two candidate aliases have
a high chance of receiving probes that allow this single central counter property
to be observed. We replaced 2554 lines of opaque Ruby code with a 902 line
Python script that clearly conveys the organizational requirement involved in
the measurements. Appendix B describes this example in further detail.

These experiments are difficult to support on existing measurement platforms
(§2), as they require distributed, coordinated probing facilities that allow for
fine-grained control of measurements. We found these examples straightforward
to implement. We did not have to write code to execute directly on VPs, copy
results off the VPs, or coordinate VPs, and the remainder of the scripts used
environment features that made our measurement intentions clear.

6 Discussion and Future Work

We have designed and built a programming environment to accelerate innova-
tion in scientific Internet measurement. Our priorities were to lower the threshold
for implementing complex measurement experiments, in a performant environ-
ment, while also allowing platform operators to accurately describe the types of
measurements the VPs will do to site hosts.

One gratifying outcome of our Python-based platform architecture is its use
in a Python-based Jupyter Notebook environment. Rather than edit scripts in a
text editor, one student developed solutions in a Jupyter Notebook environment,
with which they were familiar. They reported that this approach significantly
lowered the learning curve required to conduct their active measurements.

We designed our environment to operate on, or adjacent to, a central con-
troller that interfaces with VPs distributed around the world. The logic for mea-
surement primitives (e.g., traceroute, HTTP, etc) executes on the VPs, while
the logic that uses the results executes on or adjacent to the central controller.
For experiments where delay between the controller and VP is problematic, we
are currently exploring deployment architectures, such as sandboxed containers,
that would enable researchers to safely deploy scripts onto the VPs, without
requiring a platform operator to manage shell accounts for platform users.

We have publicly released our implementation [19] and documentation [20],
so that the Internet measurement and operations communities can extend it,
and benefit from our work. We plan to support its use on CAIDA’s Archipelego
(Ark) infrastructure, and seek to spur discussion with other active measurement
infrastructures as to how they can safely modernize their capabilities. We believe
that thinking about distributed measurement through the lens of required mea-
surement primitives, rather than ad-hoc collections of software to collect mea-
surement data, is a useful exercise, as implementing primitives lowers the barrier
to other researchers continuing the work and increases incentives to repeat mea-
surements. Our ultimate vision for this work is a world where researchers can
ask, and answer, grand questions about the global Internet in near-real-time.

A Measuring CDN Catchment and Routing

RTT from VP to OCA 500
o Contemporaneously Selected by Netflix
450
HK; (00000 COCOEONC0PEeES CO0O0NC0NEESHSS88800000000000000000)$E0O00® C00C0000000000000C0000000000
.
9 HK] (00000 COCOE0NC0PEeES CO0OCOC0NEESHSS888800000000000000000X)580000® C00C0000000000000C0000000000
s 400
n SG (00000 COCOO00C0PEees CO0CCOC0NEESHSE888800000000000000000X)BECO00® C00C0000000000000C0000000000
-
_‘“;}SG [eccceReccscaces Bt Noosceses B il c000060000060000600 1 60001100006600006000080000600005000] 350?
& us 0000 CO00OO0C0 G0 O COCCOC0000 O A0 0 0 O 0 OO0 OO O 00OCd 00 O £
Q.
)
< US 60100100060 GOO0000I0NGE0E0L0D0 BIGI0IN0D ONIEIOE0D GEOKOMNO O COH00 CEEEREC08 B0 GIC0% 300E
(9}
O yUs 1OEEOOOCOE EOOE00". COBCHHEEEE000) CUOLO0I000NE00M0EE00000EI 0G0 OECC0IEOC0Ce0IOC00EEE0000B000 g
=
o S
o US o 00000 x > 250 E
B =
S us < X OOEEOBEEHEHO OO0 OO O OCONER OORBOBCCITHANOOCOTOCIROORCOD N
>
£ us 5000 CODO0C000 200
c
§US Q00000 Neccoscocee ol
us cooooo RecXecoceecce 150
100

May 06 12 18 May 06 12 18 pMay 06 12 18 Mgy 06 12 18
7th 8th 9th 10th

Fig. 6. Effect of latency variation on server selection strategy during May 2024, for
a VP located in Thimphu, Bhutan. The X-axis shows the VP’s local time. Each row
shows a unique /24, annotated with the country using Netflix-assigned hostnames.

This measurement consists of two scripts. The first collects details of the
fast.com servers returned to each VP, and is shown in figure 5. This script
runs hourly out of cron, and stores the results in scamper’s archival format for
subsequent analysis. The second script, which we elide, processes the archived
data returned from the first script to extract the speedtest servers that Netflix
had returned over time for each VP, building history of possible speedtest servers
for each VP. The script measures latency, with ping, between the VPs and the
set of OCAs (one randomly selected per /24) for each VP, to characterize the
condition of the path between the VPs and the proximate OCAs.

With the data that we collected beginning April 11th 2024, we were able
to observe some interesting patterns, one of which we highlight here as an il-
lustrative example. We observed how traffic load appeared to influence which
OCA servers Netflix would return to the VP. Figure 6 shows RTT values to
speedtest servers returned to a VP located in Bhutan during four days in May
2024. Those servers contemporaneously selected by Netflix are noted with black
circles. Netflix generally returned servers in Hong King and Singapore, and those
had the lowest observed latency of ~100ms. However, those servers occasionally
had significant latency spikes to ~500ms. During those latency spikes, Netflix
directed the Bhutan VP to servers in the U.S., which had a latency of ~250ms.

B Router Alias Inference and Fingerprinting

2023-02 2024-02

Input:

IPv4 addresses probed: 2.64M 3.58M
Traceroute data window: 2 weeks 3 weeks
Ark VPs w/ traceroute data: 93 142
Number of countries: 37 52

Alias Resolution:

Ark VPs used for MIDAR: 55 101
Ark VPs used for iffinder: 46 101
Ark VPs used for SNMP: - 7
MIDAR + iffinder Graph:

Nodes with at least two IPs: 75,660 107,976
Addresses in nodes with at least two IPs: 284,479 425,964
SNMP Graph:

Nodes with at least two IPs: - 48,899
Addresses in nodes with at least two IPs: - 208,313
MIDAR . + iffinder + SNMP Graph:

Nodes with at least two IPs: - 125,370
Addresses in nodes with at least two IPs: - 516,867

Table 1. Properties of ITDKs collected before (2023-02) and after (2024-02) we de-
veloped our solution.

These measurements, briefly described in §5, consisted of multiple related
scripts that we integrated into an automated workflow for building the 2024-02
ITDK. Table 1 provides statistics illustrating the growth of the ITDK between
February 2023 and February 2024, driven by the expansion of Ark VPs. Overall,
we increased the number of Ark VPs providing topology data from 93 to 142, the
number of addresses probed from 2.64M to 3.58M, doubled the number of VPs
that we use for alias resolution probing, and found aliases for 50% more addresses
in 2024-02 than we did for 2023-02. These 3.58M addresses were observed in the
middle of a traceroute path, and are most likely router interface addresses. We
use the term “node” to distinguish between our router inferences, and the actual
routers themselves. By definition, all routers have at least two IP addresses. Our
“nodes with at least two IPs” are the subset of routers we were able to observe
with that property.

For 2024-02, we also evaluated the gains provided by SNMPv3 probing, fol-
lowing the work by Albakour et al. published in 2021 that showed many routers
return a unique SNMP Engine ID in response to a SNMPv3 request [3]. The
basic idea is that different IP addresses returning the same Engine ID, number
of boot counts, and inferred boot time in response to SNMPv3 queries are likely

aliases. Of the 3.58M addresses we probed, 669K returned an SNMPv3 response.
We inferred that IP addresses belonged to the same router when they return the
same SNMP Engine ID, the size of the engine ID was at least 4 bytes, the num-
ber of engine boots was the same, and the router uptime was the same; we did
not use the other filters in section 4.4 of the IMC paper [3]. This inferred 48,899
nodes with at least two IPs, many of which were shared with existing nodes
found with MIDAR + iffinder. In total, when we combined MIDAR, iffinder,
and SNMP probing, we obtained a graph with 125,370 nodes with at least two
IPs, covering 516,867 addresses.

Finally, we also implemented the methodology published in 2023 by Albak-
our et al. that described a way to infer router vendors [2]. An SNMPv3 response
embeds a vendor identifier in the SNMP Engine ID. The basic idea is that the
subset of routers that return an SNMPv3 response allow us to learn fingerprint
rules for other routers that do not respond to SNMPv3 probes, but will send
responses to TCP, UDP, and ICMP probes. For the 2024-02 ITDK, we sent
TCP, UDP, and ICMP probes to the 3.58M router interface addresses, using the
probing strategy described in [2], implemented in 170 lines of code. We inferred
96 rules to infer vendors from TCP, UDP, and ICMP response patterns, imple-
mented in 483 lines of code (which also includes logic to infer router aliases from
the same SNMP responses). Our inference script followed the same approach
as in [2] except that it also considered byte-swapped IPID values for TCP re-
sponses. When we used these rules to map response patterns to vendors, we
inferred vendors for 248K router interface addresses, in addition to the 669K
SNMPv3-responsive addresses that directly returned a vendor identifier.

Acknowledgments

This work started with a suggestion from Bill Herrin during a CAIDA AIMS
workshop that a Domain Specific Language (DSL) could accelerate discovery
with active measurement. Alexander Marder suggested that we start with Python
bindings for scamper. We thank the anonymous reviewers for their comments.
This research was supported by National Science Foundation (NSF) grants OAC-
2131987, CNS-2120399, CNS-2323219, and CNS-2212241.

References

1. Adhikari, V.K., Guo, Y., Hao, F., Hilt, V., Zhang, Z.L., Varvello, M., Steiner,
M.: Measurement study of Netflix, Hulu, and a tale of three CDNs. IEEE/ACM
Transactions On Networking 23(6), 1984-1997 (2014)

2. Albakour, T., Gasser, O., Beverly, R., Smaragdakis, G.: Illuminating router vendor
diversity within providers and along network paths. In: IMC. pp. 89-103 (Oct 2023)

3. Albakour, T., Gasser, O., Beverly, R., Smaragdakis, G.: Third time’s not a charm:
Exploiting SNMPv3 for router fingerprinting. In: IMC. pp. 150-164 (Nov 2021)

4. Beltiukov, R., Chandrasekaran, S., Gupta, A., Willinger, W.: PINOT: Pro-
grammable infrastructure for networking. In: ANRW. pp. 51-53 (Jul 2023)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

Bottger, T., Cuadrado, F., Tyson, G., Castro, L., Uhlig, S.: Open connect every-
where: A glimpse at the Internet ecosystem through the lens of the Netflix CDN.
ACM SIGCOMM Computer Communication Review 48(1), 28-34 (2018)
Cappos, J., Hemmings, M., McGeer, R., Rafetseder, A., Ricart, G.: EdgeNet: A
global cloud that spreads by local action. In: SEC. pp. 359-360 (Oct 2018)

Senel, B.C.,; Mouchet, M., Cappos, J., Fourmaux, O., Friedman, T., McGeer, R.:
EdgeNet: A multi-tenant and multi-provider edge cloud. In: EdgeSys. pp. 49-54
(Apr 2021)

Darwich, O., Rimlinger, H., Dreyfus, M., Gouel, M., Vermeulen, K.: Replication:
Towards a publicly available Internet scale IP geolocation dataset. In: IMC. pp.
1-15 (Oct 2023)

Doan, T.V., Bajpai, V., Crawford, S.: A longitudinal view of Netflix: Content
delivery over IPv6 and content cache deployments. In: IEEE INFOCOM (Jul 2020).
https://doi.org/10.1109/infocom41043.2020.9155367

Dovrolis, C., Gummadi, K., Kuzmanovic, A., Meinrath, S.D.: Measurement lab:
Overview and an invitation to the research community. Computer Communication
Review 40(3), 53-56 (Jul 2010)

Fiebig, T.: Crisis, ethics, reliability & a measurement.network: Reflections on active
network measurements in academia. In: ANRW. pp. 44-50 (Jul 2023)

Huffaker, B., Plummer, D., Moore, D., k claffy: Topology discovery by active prob-
ing. In: SAINT. pp. 90-96. Nara City, Japan (Jan 2002)

Jonglez, B.: drakkar-lig scamper-pywarts (Mar 2021), https://github.com/
drakkar-1lig/scamper-pywarts

Kalidindi, S., Zekauskas, M.J.: Surveyor: An infrastructure for Internet perfor-
mance measurements. In: INET. San Jose, CA (Jun 1999)

Keahey, K., Feamster, N., Martins, G., Powers, M., Richardson, M., Schrubbe,
A., Sherman, M.: Discovery testbed: an observational instrument for broadband
research. In: eScience (Oct 2023)

Keys, K., Hyun, Y., Luckie, M., k claffy: Internet-scale IPv4 alias resolution with
MIDAR. IEEE Transactions on Networking 21(2), 383-399 (Apr 2013)
Levchenko, K., Dhamdhere, A., Huffaker, B., kc claffy, Allman, M., Paxson, V.:
PacketLab: A universal measurement endpoint interface. In: IMC. pp. 254-260
(Nov 2017)

Luckie, M.: Scamper: a scalable and extensible packet prober for active measure-
ment of the Internet. In: IMC. pp. 239-245 (Nov 2010)

Luckie, M.: Scamper (Nov 2024), https://www.caida.org/catalog/software/
scamper/

Luckie, M.: Scamper Python module documentation (Nov 2024), https://www.
caida.org/catalog/software/scamper/python/

Luckie, M.: Understanding the deployment of public recursive resolvers
(May 2024), https://blog.caida.org/best_available_data/2024/05/06/
understanding-the-deployment-of-public-recursive-resolvers/

McGregor, T., Braun, H.W.: Balancing cost and utility in active monitoring: The
AMP example. In: INET. Yokohama, Japan (Jul 2000)

Medina, A., Allman, M., Floyd, S.: Measuring the evolution of transport protocols
in the Internet. Computer Communication Review 35(2), 37-52 (Apr 2005)
NLNOG: Ring, https://ring.nlnog.net/

Paxson, V., Mahdavi, J., Adams, A., Mathis, M.: An architecture for large-scale
Internet measurement. IEEE Communications Magazine 36(8), 48-54 (1998)
Paxson, V., Adams, A., Mathis, M.: Experiences with NIMI. In: PAM. Hamilton,
New Zealand (Apr 2000)

27.

28.

29.

30.

31.

32.

33.

34.

Peterson, L., Bavier, A., Fiuczynski, M.E., Muir, S.: Experiences building Planet-
Lab. In: OSDI. pp. 351-366. Seattle, WA (Nov 2006)

Project, C.: Cython: C-extensions for Python (Oct 2024), https://cython.org/
Randall, A., Liu, E., Akiwate, G., Padmanabhan, R., Voelker, G.M., Savage, S.,
Schulman, A.: Trufflehunter: Cache snooping rare domains at large public DNS
resolvers. In: IMC. pp. 50-64 (2020)

RIPE NCC: RIPE Atlas - coverage, https://atlas.ripe.net/coverage/
Shavitt, Y., Shir, E.: DIMES: let the Internet measure itself. Computer Commu-
nication Review 35(5), 71-74 (2005)

Spring, N., Wetherall, D.,; Anderson, T.: Scriptroute: A public Internet measure-
ment facility. In: USITS. pp. 225-238. Seattle, WA (Mar 2003)

Yan, T.B., Chen, Y., Chen, A., Zhang, Z., Huffaker, B., Mok, R., Levchenko, K.,
ke claffy: Poster: PacketLab - tools alpha release and demo. In: IMC. pp. 766-767
(Oct 2022)

Yan, T.B., Zhang, Z., Huffaker, B., Mok, R., Levchenko, K., kc claffy: Poster:
Empirically testing the PacketLab model. In: IMC. pp. 724-725 (Oct 2023)

